Abductive reasoning
Abductive reasoning
Abductive reasoning (also called abduction,[1] abductive inference,[1] or retroduction[2]) is a form of logical inference which starts with an observation or set of observations then seeks to find the simplest and most likely explanation for the observations. This process, unlike deductive reasoning, yields a plausible conclusion but does not positively verify it. Abductive conclusions are thus qualified as having a remnant of uncertainty or doubt, which is expressed in retreat terms such as "best available" or "most likely." One can understand abductive reasoning as inference to the best explanation,[3] although not all usages of the terms abduction and inference to the best explanation are exactly equivalent.[4][5]
In the 1990s, as computing power grew, the fields of law,[6] computer science, and artificial intelligence research[7] spurred renewed interest in the subject of abduction.[8] Diagnostic expert systems frequently employ abduction.
Deduction, induction, and abduction
Deductive reasoning (deduction)
Inductive reasoning (induction)
Abductive reasoning (abduction)
Formalizations of abduction
Logic-based abduction
follows from and ;
is consistent with .
- is consistent.
A proof-theoretical abduction method for first order classical logic based on the sequent calculus and a dual one, based on semantic tableaux (analytic tableaux) have been proposed (Cialdea Mayer & Pirri 1993). The methods are sound and complete and work for full first order logic, without requiring any preliminary reduction of formulae into normal forms. These methods have also been extended to modal logic.
Set-cover abduction
Abductive validation
Abductive validation is the process of validating a given hypothesis through abductive reasoning. This can also be called reasoning through successive approximation. Under this principle, an explanation is valid if it is the best possible explanation of a set of known data. The best possible explanation is often defined in terms of simplicity and elegance (see Occam's razor). Abductive validation is common practice in hypothesis formation in science; moreover, Peirce claims that it is a ubiquitous aspect of thought:
Looking out my window this lovely spring morning, I see an azalea in full bloom. No, no! I don't see that; though that is the only way I can describe what I see. That is a proposition, a sentence, a fact; but what I perceive is not proposition, sentence, fact, but only an image, which I make intelligible in part by means of a statement of fact. This statement is abstract; but what I see is concrete. I perform an abduction when I so much as express in a sentence anything I see. The truth is that the whole fabric of our knowledge is one matted felt of pure hypothesis confirmed and refined by induction. Not the smallest advance can be made in knowledge beyond the stage of vacant staring, without making an abduction at every step.[9]
It was Peirce's own maxim that "Facts cannot be explained by a hypothesis more extraordinary than these facts themselves; and of various hypotheses the least extraordinary must be adopted."[10] After obtaining results from an inference procedure, we may be left with multiple assumptions, some of which may be contradictory. Abductive validation is a method for identifying the assumptions that will lead to your goal.
Subjective logic abduction
- .
The advantage of using subjective logic abduction compared to probabilistic abduction is that uncertainty about the input argument probabilities can be explicitly expressed and taken into account during the analysis. It is thus possible to perform abductive analysis in the presence of uncertain arguments, which naturally results in degrees of uncertainty in the output conclusions.
History
The American philosopher Charles Sanders Peirce (/pɜːrs/; 1839–1914) introduced abduction into modern logic. Over the years he called such inference hypothesis, abduction, presumption, and retroduction. He considered it a topic in logic as a normative field in philosophy, not in purely formal or mathematical logic, and eventually as a topic also in economics of research.
As two stages of the development, extension, etc., of a hypothesis in scientific inquiry, abduction and also induction are often collapsed into one overarching concept — the hypothesis. That is why, in the scientific method known from Galileo and Bacon, the abductive stage of hypothesis formation is conceptualized simply as induction. Thus, in the twentieth century this collapse was reinforced by Karl Popper's explication of the hypothetico-deductive model, where the hypothesis is considered to be just "a guess"[12] (in the spirit of Peirce). However, when the formation of a hypothesis is considered the result of a process it becomes clear that this "guess" has already been tried and made more robust in thought as a necessary stage of its acquiring the status of hypothesis. Indeed, many abductions are rejected or heavily modified by subsequent abductions before they ever reach this stage.
Before 1900, Peirce treated abduction as the use of a known rule to explain an observation, e.g., it is a known rule that if it rains the grass is wet; so, to explain the fact that the grass is wet; one abduces that it has rained. Abduction can lead to false conclusions if other rules explaining the observation are not taken into account (e.g. if the sprinklers were recently on the grass is wet). This remains the common use of the term "abduction" in the social sciences and in artificial intelligence.
Peirce consistently characterized it as the kind of inference that originates a hypothesis by concluding in an explanation, though an unassured one, for some very curious or surprising (anomalous) observation stated in a premise. As early as 1865 he wrote that all conceptions of cause and force are reached through hypothetical inference; in the 1900s he wrote that all explanatory content of theories is reached through abduction. In other respects Peirce revised his view of abduction over the years.[13]
In later years his view came to be:
Abduction is guessing.[14] It is "very little hampered" by rules of logic.[15] Even a well-prepared mind's individual guesses are more frequently wrong than right.[16] But the success of our guesses far exceeds that of random luck and seems born of attunement to nature by instinct[17] (some speak of intuition in such contexts[18]).
Abduction guesses a new or outside idea so as to account in a plausible, instinctive, economical way for a surprising or very complicated phenomenon. That is its proximate aim.[17]
Its longer aim is to economize inquiry itself. Its rationale is inductive: it works often enough, is the only source of new ideas, and has no substitute in expediting the discovery of new truths.[19] Its rationale especially involves its role in coordination with other modes of inference in inquiry. It is inference to explanatory hypotheses for selection of those best worth trying.
Pragmatism is the logic of abduction. Upon the generation of an explanation (which he came to regard as instinctively guided), the pragmatic maxim gives the necessary and sufficient logical rule to abduction in general. The hypothesis, being insecure, needs to have conceivable[20] implications for informed practice, so as to be testable[21][22] and, through its trials, to expedite and economize inquiry. The economy of research is what calls for abduction and governs its art.[23]
Writing in 1910, Peirce admits that "in almost everything I printed before the beginning of this century I more or less mixed up hypothesis and induction" and he traces the confusion of these two types of reasoning to logicians' too "narrow and formalistic a conception of inference, as necessarily having formulated judgments from its premises."[24]
He started out in the 1860s treating hypothetical inference in a number of ways which he eventually peeled away as inessential or, in some cases, mistaken:
as inferring the occurrence of a character (a characteristic) from the observed combined occurrence of multiple characters which its occurrence would necessarily involve;[25] for example, if any occurrence of A is known to necessitate occurrence of B, C, D, E, then the observation of B, C, D, E suggests by way of explanation the occurrence of A. (But by 1878 he no longer regarded such multiplicity as common to all hypothetical inference.[26]Wikisource [87] )
as aiming for a more or less probable hypothesis (in 1867 and 1883 but not in 1878; anyway by 1900 the justification is not probability but the lack of alternatives to guessing and the fact that guessing is fruitful;[27] by 1903 he speaks of the "likely" in the sense of nearing the truth in an "indefinite sense";[28] by 1908 he discusses plausibility as instinctive appeal.[17]) In a paper dated by editors as circa 1901, he discusses "instinct" and "naturalness", along with the kind of considerations (low cost of testing, logical caution, breadth, and incomplexity) that he later calls methodeutical.[29]
as induction from characters (but as early as 1900 he characterized abduction as guessing[27])
as citing a known rule in a premise rather than hypothesizing a rule in the conclusion (but by 1903 he allowed either approach[15][30])
as basically a transformation of a deductive categorical syllogism[26] (but in 1903 he offered a variation on modus ponens instead,[15] and by 1911 he was unconvinced that any one form covers all hypothetical inference[31]).
1867
In 1867, Peirce's "The Natural Classification of Arguments",[25] hypothetical inference always deals with a cluster of characters (call them P′, P′′, P′′′, etc.) known to occur at least whenever a certain character (M) occurs. Note that categorical syllogisms have elements traditionally called middles, predicates, and subjects. For example: All men [middle] are mortal [predicate]; Socrates [subject] is a man [middle]; ergo Socrates [subject] is mortal [predicate]". Below, 'M' stands for a middle; 'P' for a predicate; 'S' for a subject. Note also that Peirce held that all deduction can be put into the form of the categorical syllogism Barbara (AAA-1).
[Deduction]. [Any] M is P [Any] S is M [Any] S is P.
Induction. S′, S′′, S′′′, &c. are taken at random as *M'*s; S′, S′′, S′′′, &c. are P: Any M is probably P.
Hypothesis. Any M is, for instance, P′, P′′, P′′′, &c.; S is P′, P′′, P′′′, &c.: S is probably M.
1878
In 1878, in "Deduction, Induction, and Hypothesis",[26] there is no longer a need for multiple characters or predicates in order for an inference to be hypothetical, although it is still helpful. Moreover, Peirce no longer poses hypothetical inference as concluding in a probable hypothesis. In the forms themselves, it is understood but not explicit that induction involves random selection and that hypothetical inference involves response to a "very curious circumstance". The forms instead emphasize the modes of inference as rearrangements of one another's propositions (without the bracketed hints shown below).
Deduction.
Rule: All the beans from this bag are white. Case: These beans are from this bag. Result: These beans are white. | Induction.
Case: These beans are [randomly selected] from this bag. Result: These beans are white. Rule: All the beans from this bag are white. | Hypothesis.
Rule: All the beans from this bag are white. Result: These beans [oddly] are white. Case: These beans are from this bag. |
1883
Peirce long treated abduction in terms of induction from characters or traits (weighed, not counted like objects), explicitly so in his influential 1883 "A Theory of Probable Inference", in which he returns to involving probability in the hypothetical conclusion.[32] Like "Deduction, Induction, and Hypothesis" in 1878, it was widely read (see the historical books on statistics by Stephen Stigler), unlike his later amendments of his conception of abduction. Today abduction remains most commonly understood as induction from characters and extension of a known rule to cover unexplained circumstances.
Sherlock Holmes uses this method of reasoning in the stories of Arthur Conan Doyle, although Holmes refers to it as "deductive reasoning".[33][34][35]
1902 and after
The surprising fact, C, is observed; But if A were true, C would be a matter of course, Hence, there is reason to suspect that A is true.
The hypothesis is framed, but not asserted, in a premise, then asserted as rationally suspectable in the conclusion. Thus, as in the earlier categorical syllogistic form, the conclusion is formulated from some premise(s). But all the same the hypothesis consists more clearly than ever in a new or outside idea beyond what is known or observed. Induction in a sense goes beyond observations already reported in the premises, but it merely amplifies ideas already known to represent occurrences, or tests an idea supplied by hypothesis; either way it requires previous abductions in order to get such ideas in the first place. Induction seeks facts to test a hypothesis; abduction seeks a hypothesis to account for facts.
Note that the hypothesis ("A") could be of a rule. It need not even be a rule strictly necessitating the surprising observation ("C"), which needs to follow only as a "matter of course"; or the "course" itself could amount to some known rule, merely alluded to, and also not necessarily a rule of strict necessity. In the same year, Peirce wrote that reaching a hypothesis may involve placing a surprising observation under either a newly hypothesized rule or a hypothesized combination of a known rule with a peculiar state of facts, so that the phenomenon would be not surprising but instead either necessarily implied or at least likely.[30]
Peirce did not remain quite convinced about any such form as the categorical syllogistic form or the 1903 form. In 1911, he wrote, "I do not, at present, feel quite convinced that any logical form can be assigned that will cover all 'Retroductions'. For what I mean by a Retroduction is simply a conjecture which arises in the mind."[31]
Pragmatism
In 1901 Peirce wrote, "There would be no logic in imposing rules, and saying that they ought to be followed, until it is made out that the purpose of hypothesis requires them."[37] In 1903 Peirce called pragmatism "the logic of abduction" and said that the pragmatic maxim gives the necessary and sufficient logical rule to abduction in general.[22] The pragmatic maxim is:
Consider what effects, that might conceivably have practical bearings, we conceive the object of our conception to have. Then, our conception of these effects is the whole of our conception of the object.
It is a method for fruitful clarification of conceptions by equating the meaning of a conception with the conceivable practical implications of its object's conceived effects. Peirce held that that is precisely tailored to abduction's purpose in inquiry, the forming of an idea that could conceivably shape informed conduct. In various writings in the 1900s[23][38] he said that the conduct of abduction (or retroduction) is governed by considerations of economy, belonging in particular to the economics of research. He regarded economics as a normative science whose analytic portion might be part of logical methodeutic (that is, theory of inquiry).[39]
Three levels of logic about abduction
Peirce came over the years to divide (philosophical) logic into three departments:
Stechiology, or speculative grammar, on the conditions for meaningfulness. Classification of signs (semblances, symptoms, symbols, etc.) and their combinations (as well as their objects and interpretants).
Logical critic, or logic proper, on validity or justifiability of inference, the conditions for true representation. Critique of arguments in their various modes (deduction, induction, abduction).
Methodeutic, or speculative rhetoric, on the conditions for determination of interpretations. Methodology of inquiry in its interplay of modes.
Peirce had, from the start, seen the modes of inference as being coordinated together in scientific inquiry and, by the 1900s, held that hypothetical inference in particular is inadequately treated at the level of critique of arguments.[21][22] To increase the assurance of a hypothetical conclusion, one needs to deduce implications about evidence to be found, predictions which induction can test through observation so as to evaluate the hypothesis. That is Peirce's outline of the scientific method of inquiry, as covered in his inquiry methodology, which includes pragmatism or, as he later called it, pragmaticism, the clarification of ideas in terms of their conceivable implications regarding informed practice.
Classification of signs
As early as 1866,[40] Peirce held that:
- Hypothesis (abductive inference) is inference through an icon (also called a likeness).
- Induction is inference through an index (a sign by factual connection); a sample is an index of the totality from which it is drawn.
- Deduction is inference through a symbol (a sign by interpretive habit irrespective of resemblance or connection to its object).
In 1902, Peirce wrote that, in abduction: "It is recognized that the phenomena are like, i.e. constitute an Icon of, a replica of a general conception, or Symbol."[41]
Critique of arguments
At the critical level Peirce examined the forms of abductive arguments (as discussed above), and came to hold that the hypothesis should economize explanation for plausibility in terms of the feasible and natural. In 1908 Peirce described this plausibility in some detail.[17] It involves not likeliness based on observations (which is instead the inductive evaluation of a hypothesis), but instead optimal simplicity in the sense of the "facile and natural", as by Galileo's natural light of reason and as distinct from "logical simplicity" (Peirce does not dismiss logical simplicity entirely but sees it in a subordinate role; taken to its logical extreme it would favor adding no explanation to the observation at all). Even a well-prepared mind guesses oftener wrong than right, but our guesses succeed better than random luck at reaching the truth or at least advancing the inquiry, and that indicates to Peirce that they are based in instinctive attunement to nature, an affinity between the mind's processes and the processes of the real, which would account for why appealingly "natural" guesses are the ones that oftenest (or least seldom) succeed; to which Peirce added the argument that such guesses are to be preferred since, without "a natural bent like nature's", people would have no hope of understanding nature. In 1910 Peirce made a three-way distinction between probability, verisimilitude, and plausibility, and defined plausibility with a normative "ought": "By plausibility, I mean the degree to which a theory ought to recommend itself to our belief independently of any kind of evidence other than our instinct urging us to regard it favorably."[42] For Peirce, plausibility does not depend on observed frequencies or probabilities, or on verisimilitude, or even on testability, which is not a question of the critique of the hypothetical inference as an inference, but rather a question of the hypothesis's relation to the inquiry process.
The phrase "inference to the best explanation" (not used by Peirce but often applied to hypothetical inference) is not always understood as referring to the most simple and natural hypotheses (such as those with the fewest assumptions). However, in other senses of "best", such as "standing up best to tests", it is hard to know which is the best explanation to form, since one has not tested it yet. Still, for Peirce, any justification of an abductive inference as good is not completed upon its formation as an argument (unlike with induction and deduction) and instead depends also on its methodological role and promise (such as its testability) in advancing inquiry.[21][22][43]
Methodology of inquiry
At the methodeutical level Peirce held that a hypothesis is judged and selected[21] for testing because it offers, via its trial, to expedite and economize the inquiry process itself toward new truths, first of all by being testable and also by further economies,[23] in terms of cost, value, and relationships among guesses (hypotheses). Here, considerations such as probability, absent from the treatment of abduction at the critical level, come into play. For examples:
Cost: A simple but low-odds guess, if low in cost to test for falsity, may belong first in line for testing, to get it out of the way. If surprisingly it stands up to tests, that is worth knowing early in the inquiry, which otherwise might have stayed long on a wrong though seemingly likelier track.
Value: A guess is intrinsically worth testing if it has instinctual plausibility or reasoned objective probability, while subjective likelihood, though reasoned, can be treacherous.
Interrelationships: Guesses can be chosen for trial strategically for their caution, for which Peirce gave as example the game of Twenty Questions, breadth of applicability to explain various phenomena, and incomplexity, that of a hypothesis that seems too simple but whose trial "may give a good 'leave', as the billiard-players say", and be instructive for the pursuit of various and conflicting hypotheses that are less simple.[44]
Other writers
Norwood Russell Hanson, a philosopher of science, wanted to grasp a logic explaining how scientific discoveries take place. He used Peirce's notion of abduction for this.[45]
Further development of the concept can be found in Peter Lipton's Inference to the Best Explanation (Lipton, 1991).
Applications
Artificial intelligence
Applications in artificial intelligence include fault diagnosis, belief revision, and automated planning. The most direct application of abduction is that of automatically detecting faults in systems: given a theory relating faults with their effects and a set of observed effects, abduction can be used to derive sets of faults that are likely to be the cause of the problem.
Medicine
Automated planning
Abduction can also be used to model automated planning.[48] Given a logical theory relating action occurrences with their effects (for example, a formula of the event calculus), the problem of finding a plan for reaching a state can be modeled as the problem of abducting a set of literals implying that the final state is the goal state.
Intelligence analysis
In intelligence analysis, analysis of competing hypotheses and Bayesian networks, probabilistic abductive reasoning is used extensively. Similarly in medical diagnosis and legal reasoning, the same methods are being used, although there have been many examples of errors, especially caused by the base rate fallacy and the prosecutor's fallacy.
Belief revision
Belief revision, the process of adapting beliefs in view of new information, is another field in which abduction has been applied. The main problem of belief revision is that the new information may be inconsistent with the prior web of beliefs, while the result of the incorporation cannot be inconsistent. The process of updating the web of beliefs can be done by the use of abduction: once an explanation for the observation has been found, integrating it does not generate inconsistency.
This use of abduction is not straightforward, as adding propositional formulae to other propositional formulae can only make inconsistencies worse. Instead, abduction is done at the level of the ordering of preference of the possible worlds. Preference models use fuzzy logic or utility models.
Philosophy of science
In the philosophy of science, abduction has been the key inference method to support scientific realism, and much of the debate about scientific realism is focused on whether abduction is an acceptable method of inference.[49]
Historical linguistics
In historical linguistics, abduction during language acquisition is often taken to be an essential part of processes of language change such as reanalysis and analogy.[50]
Anthropology
In anthropology, Alfred Gell in his influential book Art and Agency defined abduction (after Eco[51]) as "a case of synthetic inference 'where we find some very curious circumstances, which would be explained by the supposition that it was a case of some general rule, and thereupon adopt that supposition'".[52] Gell criticizes existing "anthropological" studies of art for being too preoccupied with aesthetic value and not preoccupied enough with the central anthropological concern of uncovering "social relationships", specifically the social contexts in which artworks are produced, circulated, and received.[53] Abduction is used as the mechanism for getting from art to agency. That is, abduction can explain how works of art inspire a sensus communis: the commonly held views shared by members that characterize a given society.[54]
The question Gell asks in the book is, "how does it initially 'speak' to people?" He answers by saying that "No reasonable person could suppose that art-like relations between people and things do not involve at least some form of semiosis."[52] However, he rejects any intimation that semiosis can be thought of as a language because then he would have to admit to some pre-established existence of the sensus communis that he wants to claim only emerges afterwards out of art. Abduction is the answer to this conundrum because the tentative nature of the abduction concept (Peirce likened it to guessing) means that not only can it operate outside of any pre-existing framework, but moreover, it can actually intimate the existence of a framework. As Gell reasons in his analysis, the physical existence of the artwork prompts the viewer to perform an abduction that imbues the artwork with intentionality. A statue of a goddess, for example, in some senses actually becomes the goddess in the mind of the beholder; and represents not only the form of the deity but also her intentions (which are adduced from the feeling of her very presence). Therefore, through abduction, Gell claims that art can have the kind of agency that plants the seeds that grow into cultural myths. The power of agency is the power to motivate actions and inspire ultimately the shared understanding that characterizes any given society.[54]
See also
Argument
Argumentation theory
Attribution (psychology)
Charles Sanders Peirce bibliography
Critical thinking
Defeasible reasoning
Doug Walton
Duck test
Gregory Bateson
Heuristic
Inductive probability
Logical reasoning
Maximum likelihood
Sensemaking
Sign relation
Statistical model