Everipedia Logo
Everipedia is now IQ.wiki - Join the IQ Brainlist and our Discord for early access to editing on the new platform and to participate in the beta testing.
Quantum

Quantum

In physics, a quantum (plural: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property may be "quantized" is referred to as "the hypothesis of quantization".[1] This means that the magnitude of the physical property can take on only discrete values consisting of integer multiples of one quantum.

For example, a photon is a single quantum of light (or of any other form of electromagnetic radiation). Similarly, the energy of an electron bound within an atom is quantized and can exist only in certain discrete values. (Indeed, atoms and matter in general are stable because electrons can exist only at discrete energy levels within an atom.) Quantization is one of the foundations of the much broader physics of quantum mechanics. Quantization of energy and its influence on how energy and matter interact (quantum electrodynamics) is part of the fundamental framework for understanding and describing nature.

Etymology and discovery

The word quantum comes from the Latin quantus, meaning "how great". "Quanta", short for "quanta of electricity" (electrons), was used in a 1902 article on the photoelectric effect by Philipp Lenard, who credited Hermann von Helmholtz for using the word in the area of electricity. However, the word quantum in general was well known before 1900.[2] It was often used by physicians, such as in the term quantum satis. Both Helmholtz and Julius von Mayer were physicians as well as physicists. Helmholtz used quantum with reference to heat in his article[3] on Mayer's work, and the word quantum can be found in the formulation of the first law of thermodynamics by Mayer in his letter[4] dated July 24, 1841.

In 1901, Max Planck used quanta to mean "quanta of matter and electricity",[5] gas, and heat.[6] In 1905, in response to Planck's work and the experimental work of Lenard (who explained his results by using the term quanta of electricity), Albert Einstein suggested that radiation existed in spatially localized packets which he called "quanta of light" ("Lichtquanta").[7]

The concept of quantization of radiation was discovered in 1900 by Max Planck, who had been trying to understand the emission of radiation from heated objects, known as black-body radiation. By assuming that energy can be absorbed or released only in tiny, differential, discrete packets (which he called "bundles", or "energy elements"),[8] Planck accounted for certain objects changing colour when heated.[9] On December 14, 1900, Planck reported his findings to the German Physical Society, and introduced the idea of quantization for the first time as a part of his research on black-body radiation.[10] As a result of his experiments, Planck deduced the numerical value of h, known as the Planck constant, and reported more precise values for the unit of electrical charge and the Avogadro–Loschmidt number, the number of real molecules in a mole, to the German Physical Society. After his theory was validated, Planck was awarded the Nobel Prize in Physics for his discovery in 1918.

Beyond electromagnetic radiation

While quantization was first discovered in electromagnetic radiation, it describes a fundamental aspect of energy not just restricted to photons.[11] In the attempt to bring theory into agreement with experiment, Max Planck postulated that electromagnetic energy is absorbed or emitted in discrete packets, or quanta.[12]

See also

  • Elementary particle

  • Graviton

  • Introduction to quantum mechanics

  • Magnetic flux quantum

  • Photon

  • Photon polarization

  • Quantization (physics)

  • Quantum cellular automata

  • Quantum channel

  • Quantum coherence

  • Quantum chromodynamics

  • Quantum computer

  • Quantum cryptography

  • Quantum dot

  • Quantum electrodynamics

  • Quantum electronics

  • Quantum entanglement

  • Quantum Field Theory

  • Quantum immortality

  • Quantum lithography

  • Quantum Mechanics

  • Quantum number

  • Quantum Optics

  • Quantum sensor

  • Quantum state

  • Subatomic particle

  • Quantum teleportation

References

[1]
Citation Linkopenlibrary.orgWiener, N. (1966). Differential Space, Quantum Systems, and Prediction. Cambridge: The Massachusetts Institute of Technology Press
Sep 29, 2019, 6:38 PM
[2]
Citation Linkwww.bartleby.comE. Cobham Brewer 1810–1897. Dictionary of Phrase and Fable. 1898.
Sep 29, 2019, 6:38 PM
[3]
Citation Linkwww.ub.uni-heidelberg.deE. Helmholtz, Robert Mayer's Priorität (in German)
Sep 29, 2019, 6:38 PM
[4]
Citation Linkweb.archive.orgHerrmann, Armin (1991). "Heimatseite von Robert J. Mayer" (in German). Weltreich der Physik, GNT-Verlag. Archived from the original on 1998-02-09.CS1 maint: BOT: original-url status unknown (link)
Sep 29, 2019, 6:38 PM
[5]
Citation Link//doi.org/10.1002%2Fandp.19013090311Planck, M. (1901). "Ueber die Elementarquanta der Materie und der Elektricität" (PDF). Annalen der Physik (in German). 309 (3): 564–566. Bibcode:1901AnP...309..564P. doi:10.1002/andp.19013090311.
Sep 29, 2019, 6:38 PM
[6]
Citation Link//doi.org/10.1002%2Fandp.18832550612Planck, Max (1883). "Ueber das thermodynamische Gleichgewicht von Gasgemengen". Annalen der Physik (in German). 255 (6): 358–378. Bibcode:1883AnP...255..358P. doi:10.1002/andp.18832550612.
Sep 29, 2019, 6:38 PM
[7]
Citation Linken.wikisource.orgEinstein, A. (1905). "Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt" (PDF). Annalen der Physik (in German). 17 (6): 132–148. Bibcode:1905AnP...322..132E. doi:10.1002/andp.19053220607.. A partial English translation is available from Wikisource.
Sep 29, 2019, 6:38 PM
[8]
Citation Linkdbhs.wvusd.k12.ca.usMax Planck (1901). "Ueber das Gesetz der Energieverteilung im Normalspectrum (On the Law of Distribution of Energy in the Normal Spectrum)". Annalen der Physik. 309 (3): 553. Bibcode:1901AnP...309..553P. doi:10.1002/andp.19013090310. Archived from the original on 2008-04-18.
Sep 29, 2019, 6:38 PM
[9]
Citation Linkopenlibrary.orgBrown, T., LeMay, H., Bursten, B. (2008). Chemistry: The Central Science Upper Saddle River, NJ: Pearson Education ISBN 0-13-600617-5
Sep 29, 2019, 6:38 PM
[10]
Citation Link//doi.org/10.1007%2FBF00327765Klein, Martin J. (1961). "Max Planck and the beginnings of the quantum theory". Archive for History of Exact Sciences. 1 (5): 459–479. doi:10.1007/BF00327765.
Sep 29, 2019, 6:38 PM
[11]
Citation Linkwww.scienceagogo.comMelville, K. (2005, February 11). Real-World Quantum Effects Demonstrated
Sep 29, 2019, 6:38 PM
[12]
Citation Linkopenlibrary.orgModern Applied Physics-Tippens third edition; McGraw-Hill.
Sep 29, 2019, 6:38 PM
[13]
Citation Linkwww.bartleby.comDictionary of Phrase and Fable. 1898.
Sep 29, 2019, 6:38 PM
[14]
Citation Linkwww.ub.uni-heidelberg.deE. Helmholtz, Robert Mayer's Priorität
Sep 29, 2019, 6:38 PM
[15]
Citation Linkweb.archive.org"Heimatseite von Robert J. Mayer"
Sep 29, 2019, 6:38 PM
[16]
Citation Linkzenodo.org"Ueber die Elementarquanta der Materie und der Elektricität"
Sep 29, 2019, 6:38 PM
[17]
Citation Linkui.adsabs.harvard.edu1901AnP...309..564P
Sep 29, 2019, 6:38 PM
[18]
Citation Linkdoi.org10.1002/andp.19013090311
Sep 29, 2019, 6:38 PM
[19]
Citation Linkzenodo.org"Ueber das thermodynamische Gleichgewicht von Gasgemengen"
Sep 29, 2019, 6:38 PM
[20]
Citation Linkui.adsabs.harvard.edu1883AnP...255..358P
Sep 29, 2019, 6:38 PM