Wess–Zumino–Witten model

Wess–Zumino–Witten model

In theoretical physics and mathematics, a Wess–Zumino–Witten (WZW) model, also called a Wess–Zumino–Novikov–Witten model, is a type of two-dimensional conformal field theory named after Julius Wess, Bruno Zumino, Sergei Novikov and Edward Witten.[1][2][3][4] A WZW model is associated to a Lie group (or supergroup), and its symmetry algebra is the affine Lie algebra built from the corresponding Lie algebra (or Lie superalgebra). By extension, the name WZW model is sometimes used for any conformal field theory whose symmetry algebra is an affine Lie algebra.[5]
Action
Definition
Topological properties of the Wess–Zumino term
Integer values of the level also play an important role in the representation theory of the model's symmetry algebra, which is an affine Lie algebra. If the level is a positive integer, the affine Lie algebra has unitary highest weight representations with highest weights that are dominant integral. Such representations decompose into finite-dimensional subrepresentations with respect to the subalgebras spanned by each simple root, the corresponding negative root and their commutator, which is a Cartan generator.
Geometrical interpretation of the Wess–Zumino term
- are the basis vectors for the
This form leads directly to a topological analysis of the WZ term.
Geometrically, this term describes the torsion of the respective manifold.[7] The presence of this torsion compels teleparallelism of the manifold, and thus trivialization of the torsionful curvature tensor; and hence arrest of the renormalization flow, an infrared fixed point of the renormalization group, a phenomenon termed geometrostasis.
Symmetry algebra
Affine Lie algebra
Sugawara construction
The Sugawara construction is an embedding of the Virasoro algebra into the universal enveloping algebra of the affine Lie algebra. The existence of the embedding shows that WZW models are conformal field theories. Moreover, it leads to Knizhnik-Zamolodchikov equations for correlation functions.
Spectrum
WZW models with compact, simply connected groups
WZW models with other types of groups
Other theories based on affine Lie algebras
Fields and correlation functions
Fields
By the state-field correspondence, affine primary fields correspond to affine primary states, which are the highest weight states of highest weight representations of the affine Lie algebra.
Correlation functions
Gauged WZW models
Applications
WZW models and their deformations have been proposed for describing the plateau transition in the integer quantum Hall effect.[14]