Union (set theory)

Union (set theory)

In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection.[1] It is one of the fundamental operations through which sets can be combined and related to each other.
For explanation of the symbols used in this article, refer to the table of mathematical symbols.
Union of two sets
The union of two sets A and B is the set of elements which are in A, in B, or in both A and B. In symbols,
For example, if A = {1, 3, 5, 7} and B = {1, 2, 4, 6} then A ∪ B = {1, 2, 3, 4, 5, 6, 7}. A more elaborate example (involving two infinite sets) is:
- A = {x is an evenintegerlarger than 1}B = {x is an odd integer larger than 1}
As another example, the number 9 is not contained in the union of the set of prime numbers {2, 3, 5, 7, 11, …} and the set of even numbers {2, 4, 6, 8, 10, …}, because 9 is neither prime nor even.
Algebraic properties
Binary union is an associative operation; that is, for any sets A, B, and C,
The operations can be performed in any order, and the parentheses may be omitted without ambiguity (i.e., either of the above can be expressed equivalently as A ∪ B ∪ C). Similarly, union is commutative, so the sets can be written in any order.[4]
The empty set is an identity element for the operation of union. That is, A ∪ ∅ = A, for any set A. This follows from analogous facts about logical disjunction.
Since sets with unions and intersections form a Boolean algebra, intersection distributes over union
and union distributes over intersection
Within a given universal set, union can be written in terms of the operations of intersection and complement as
where the superscript C denotes the complement with respect to the universal set.
Finite unions
One can take the union of several sets simultaneously. For example, the union of three sets A, B, and C contains all elements of A, all elements of B, and all elements of C, and nothing else. Thus, x is an element of A ∪ B ∪ C if and only if x is in at least one of A, B, and C.
Arbitrary unions
The most general notion is the union of an arbitrary collection of sets, sometimes called an infinitary union. If M is a set or class whose elements are sets, then x is an element of the union of M if and only if there is at least one element A of M such that x is an element of A.[7] In symbols:
This idea subsumes the preceding sections—for example, A ∪ B ∪ C is the union of the collection {A, B, C}. Also, if M is the empty collection, then the union of M is the empty set.
Notations
When the symbol "∪" is placed before other symbols instead of between them, it is usually rendered as a larger size.
See also
Alternation (formal language theory), the union of sets of strings
Disjoint union
Intersection (set theory)
Iterated binary operation
Naive set theory
Symmetric difference