Everipedia Logo
Everipedia is now IQ.wiki - Join the IQ Brainlist and our Discord for early access to editing on the new platform and to participate in the beta testing.
Prüfer group

Prüfer group

In mathematics, specifically in group theory, the p or the p or p-group, Z(p∞), for a prime number p is the unique p-group in which every element has p different p-th roots.

The Prüfer p-groups are countable abelian groups which are important in the classification of infinite abelian groups: they (along with the group of rational numbers) form the smallest building blocks of all divisible groups.

The groups are named after Heinz Prüfer, a German mathematician of the early 20th century.

Constructions of Z(p∞)

The Prüfer p-group may be identified with the subgroup of the circle group, U(1), consisting of all p**n-th roots of unity as n ranges over all non-negative integers:

The group operation here is the multiplication of complex numbers.

There is a presentation

Here, the group operation in Z(p∞) is written as multiplication.

Alternatively and equivalently, the Prüfer p-group may be defined as the Sylow p-subgroup of the quotient group /, consisting of those elements whose order is a power of p:

(where Z[1/p] denotes the group of all rational numbers whose denominator is a power of p, using addition of rational numbers as group operation).

For each natural number n, consider the quotient group Z/pnZ** and the homomorphism Z/pnZ** → Z/p**n+1Z induced by multiplication by p. The direct limit of this system is Z(p∞):

We can also write

where Qp denotes the additive group of p-adic numbers and Zp is the subgroup of p-adic integers.

Properties

The complete list of subgroups of the Prüfer p-group Z(p∞) = Z[1/p]/Z is:

(Hereis a cyclic subgroup of Z(p) with pnelements; it contains precisely those elements of Z(p) whoseorderdivides pnand corresponds to the set of *pn*-th roots of unity.) The Prüfer p-groups are the only infinite groups whose subgroups aretotally orderedby inclusion. This sequence of inclusions expresses the Prüfer p-group as thedirect limitof its finite subgroups. As there is nomaximal subgroupof a Prüfer p-group, it is its ownFrattini subgroup.

Given this list of subgroups, it is clear that the Prüfer p-groups are indecomposable (cannot be written as a direct sum of proper subgroups). More is true: the Prüfer p-groups are subdirectly irreducible. An abelian group is subdirectly irreducible if and only if it is isomorphic to a finite cyclic p-group or to a Prüfer group.

The Prüfer p-group is the unique infinite p-group which is locally cyclic (every finite set of elements generates a cyclic group). As seen above, all proper subgroups of Z(p∞) are finite. The Prüfer p-groups are the only infinite abelian groups with this property.[1]

The Prüfer p-groups are divisible. They play an important role in the classification of divisible groups; along with the rational numbers they are the simplest divisible groups. More precisely: an abelian group is divisible if and only if it is the direct sum of a (possibly infinite) number of copies of Q and (possibly infinite) numbers of copies of Z(p∞) for every prime p. The (cardinal) numbers of copies of Q and Z(p∞) that are used in this direct sum determine the divisible group up to isomorphism.[2]

As an abelian group (that is, as a Z-module), Z(p∞) is Artinian but not Noetherian.[3] It can thus be used as a counterexample against the idea that every Artinian module is Noetherian (whereas every Artinian ring is Noetherian).

The endomorphism ring of Z(p∞) is isomorphic to the ring of p-adic integers Zp.[4]

In the theory of locally compact topological groups the Prüfer p-group (endowed with the discrete topology) is the Pontryagin dual of the compact group of p-adic integers, and the group of p-adic integers is the Pontryagin dual of the Prüfer p-group.[5]

See also

  • p-adic integers, which can be defined as the inverse limit of the finite subgroups of the Prüfer p-group.

  • Dyadic rational, rational numbers of the form a/2b. The Prüfer 2-group can be viewed as the dyadic rationals modulo 1.

References

[1]
Citation Linkopenlibrary.orgSee Vil'yams (2001)
Sep 22, 2019, 1:04 AM
[2]
Citation Linkopenlibrary.orgSee Kaplansky (1965)
Sep 22, 2019, 1:04 AM
[3]
Citation Linkopenlibrary.orgSee also Jacobson (2009), p. 102, ex. 2.
Sep 22, 2019, 1:04 AM
[4]
Citation Linkopenlibrary.orgSee Vil'yams (2001)
Sep 22, 2019, 1:04 AM
[5]
Citation Linkprojecteuclid.orgD. L. Armacost and W. L. Armacost,"On p-thetic groups", Pacific J. Math., 41, no. 2 (1972), 295–301
Sep 22, 2019, 1:04 AM
[6]
Citation Linkwww.encyclopediaofmath.org"Quasi-cyclic group"
Sep 22, 2019, 1:04 AM
[7]
Citation Linkprojecteuclid.orgOn p-thetic groups
Sep 22, 2019, 1:04 AM
[8]
Citation Linkwww.encyclopediaofmath.org"Quasi-cyclic group"
Sep 22, 2019, 1:04 AM
[9]
Citation Linken.wikipedia.orgThe original version of this page is from Wikipedia, you can edit the page right here on Everipedia.Text is available under the Creative Commons Attribution-ShareAlike License.Additional terms may apply.See everipedia.org/everipedia-termsfor further details.Images/media credited individually (click the icon for details).
Sep 22, 2019, 1:04 AM