Everipedia Logo
Everipedia is now IQ.wiki - Join the IQ Brainlist and our Discord for early access to editing on the new platform and to participate in the beta testing.
Metric (mathematics)

Metric (mathematics)

In mathematics, a metric or distance function is a function that defines a distance between each pair of elements of a set. A set with a metric is called a metric space.[1] A metric induces a topology on a set, but not all topologies can be generated by a metric. A topological space whose topology can be described by a metric is called metrizable.

An important source of metrics in differential geometry are metric tensors, bilinear forms that may be defined from the tangent vectors of a differentiable manifold onto a scalar. A metric tensor allows distances along curves to be determined through integration, and thus determines a metric. However, not every metric comes from a metric tensor in this way.

Definition

A metric on a set X is a function (called the distance function or simply distance)

,
whereis the set of non-negativereal numbersand for all, the following conditions are satisfied:

Conditions 1 and 2 together define a positive-definite function. The first condition is implied by the others.

A metric is called an ultrametric if it satisfies the following stronger version of the triangle inequality where points can never fall 'between' other points:

for all

A metric d on X is called intrinsic if any two points x and y in X can be joined by a curve with length arbitrarily close to d(x, y).

For sets on which an addition + : X × XX is defined, d is called a translation invariant metric if

for all x, y, and a in X.

References

[1]
Citation Linkopenlibrary.orgČech, Eduard (1969). Point Sets. New York: Academic Press. p. 42.
Sep 23, 2019, 3:48 PM
[2]
Citation Link//doi.org/10.1109%2FTIT.2011.2110130Vitanyi, Paul M. B. (2011). "Information Distance in Multiples". IEEE Transactions on Information Theory. 57 (4): 2451. arXiv:0905.3347. doi:10.1109/TIT.2011.2110130.
Sep 23, 2019, 3:48 PM
[3]
Citation Link//doi.org/10.1109%2FTPAMI.2014.2375175Cohen, Andrew R.; Vitanyi, Paul M. B. (2012). "Normalized Compression Distance of Multisets with Applications". IEEE Transactions on Pattern Analysis and Machine Intelligence. 37 (8): 1602–1614. arXiv:1212.5711. doi:10.1109/TPAMI.2014.2375175.
Sep 23, 2019, 3:48 PM
[4]
Citation Linkopenlibrary.orgE.g. Steen & Seebach (1995).
Sep 23, 2019, 3:48 PM
[5]
Citation Linklink.springer.comSmyth, M. (1987). M.Main; A.Melton; M.Mislove; D.Schmidt (eds.). Quasi uniformities: reconciling domains with metric spaces. 3rd Conference on Mathematical Foundations of Programming Language Semantics. Springer-Verlag, Lecture Notes in Computer Science 298. pp. 236–253.
Sep 23, 2019, 3:48 PM
[6]
Citation Link//www.worldcat.org/oclc/13064804Rolewicz, Stefan (1987), Functional Analysis and Control Theory: Linear Systems, Springer, ISBN 90-277-2186-6, OCLC 13064804 This book calls them "semimetrics". That same term is also frequently used for two other generalizations of metrics.
Sep 23, 2019, 3:48 PM
[7]
Citation Link//www.ams.org/mathscinet-getitem?mr=2164775Väisälä, Jussi (2005), "Gromov hyperbolic spaces" (PDF), Expositiones Mathematicae, 23 (3): 187–231, doi:10.1016/j.exmath.2005.01.010, MR 2164775
Sep 23, 2019, 3:48 PM
[8]
Citation Link//doi.org/10.1007%2Fs12220-008-9065-4Xia, Q. (2009), "The Geodesic Problem in Quasimetric Spaces", Journal of Geometric Analysis, 19 (2): 452–479, arXiv:0807.3377, doi:10.1007/s12220-008-9065-4
Sep 23, 2019, 3:48 PM
[9]
Citation Linkui.adsabs.harvard.eduQinglan Xia (2008), "The geodesic problem in nearmetric spaces", Journal of Geometric Analysis, 19 (2): 452–479, arXiv:0807.3377, Bibcode:2008arXiv0807.3377X.
Sep 23, 2019, 3:48 PM
[10]
Citation Link//doi.org/10.1109%2FINFOCOM.2008.163
  • Fraigniaud, P.; Lebhar, E.; Viennot, L. (2008). "The Inframetric Model for the Internet". 2008 IEEE INFOCOM - The 27th Conference on Computer Communications. IEEE INFOCOM 2008. the 27th Conference on Computer Communications. pp. 1085–1093. CiteSeerX 10.1.1.113.6748. doi:10.1109/INFOCOM.2008.163. ISBN 978-1-4244-2026-1..
Sep 23, 2019, 3:48 PM
[11]
Citation Linkbooks.google.comBuldygin, V.V.; Kozachenko, I.U.V. (2000), Metric characterization of random variables and random processes.
Sep 23, 2019, 3:48 PM
[12]
Citation Linkopenlibrary.orgKhelemskiĭ (2006), Lectures and exercises on functional analysis.
Sep 23, 2019, 3:48 PM
[13]
Citation Linkopenlibrary.orgArkhangel'skii & Pontryagin (1990). Aldrovandi, R.; Pereira, J.G. (1995), An introduction to geometrical physics.
Sep 23, 2019, 3:48 PM
[14]
Citation Linkemis.ams.orgLawvere, F.W. (2002) [1973], Metric spaces, generalised logic, and closed categories (PDF), Reprints in Theory and Applications of Categories, 1, pp. 1–37.
Sep 23, 2019, 3:48 PM
[15]
Citation Linkwww.tac.mta.caVickers, Steven (2005), "Localic completion of generalized metric spaces I", Theory and Applications of Categories, 14: 328–356
Sep 23, 2019, 3:48 PM
[16]
Citation Linkopenlibrary.orgS. Parrott (1987) Relativistic Electrodynamics and Differential Geometry, page 4, Springer-Verlag ISBN 0-387-96435-5 : "This bilinear form is variously called the Lorentz metric, or Minkowski metric or metric tensor."
Sep 23, 2019, 3:48 PM
[17]
Citation Linkopenlibrary.orgThomas E. Cecil (1992) Lie Sphere Geometry, page 9, Springer-Verlag ISBN 0-387-97747-3 : "We call this scalar product the Lorentz metric"
Sep 23, 2019, 3:48 PM
[18]
Citation Link//www.ams.org/mathscinet-getitem?mr=05074460507446
Sep 23, 2019, 3:48 PM
[19]
Citation Link//www.worldcat.org/oclc/3231184732311847
Sep 23, 2019, 3:48 PM
[20]
Citation Linkplanetmath.org"Quasimetric space"
Sep 23, 2019, 3:48 PM