Everipedia Logo
Everipedia is now IQ.wiki - Join the IQ Brainlist and our Discord for early access to editing on the new platform and to participate in the beta testing.
Hydroquinone

Hydroquinone

Hydroquinone, also known as benzene-1,4-diol or quinol, is an aromatic organic compound that is a type of phenol, a derivative of benzene, having the chemical formula C6H4(OH)2. It has two hydroxyl groups bonded to a benzene ring in a para position. It is a white granular solid. Substituted derivatives of this parent compound are also referred to as hydroquinones. The name "hydroquinone" was coined by Friedrich Wöhler in 1843.[7]

Hydroquinone
Names
Preferred IUPAC name
Other names
Identifiers
605970
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard100.004.199[53]
EC Number204-617-8
2742
KEGG
RTECS numberMX3500000
UNII
UN number3077, 2662
Properties
Molar massg·mol
Appearancewhite solid
Density1.3 g cm, solid
Melting point172 °C (342 °F; 445 K)
Boiling point287 °C (549 °F; 560 K)
5.9 g/100 mL (15 °C)
Vapor pressure0.00001 mmHg (20°C)[2]
Acidity(pK)9.9[3]
-64.63·10cm/mol
Structure
1.4±0.1D[4]
Pharmacology
D11AX11()
Hazards
Harmful (Xn)Carc. Cat. 3Muta. Cat. 3Dangerous forthe environment (N)
R-phrasesR22R40R41R43R50R68
S-phrases(S2)S26S36/37/39S61
NFPA 704
Flash point165 °C (329 °F; 438 K)
Lethal dose or concentration (LD, LC):
490 mg/kg (mammal, oral)245 mg/kg (mouse, oral)200 mg/kg (rabbit, oral)320 mg/kg (rat, oral)550 mg/kg (guinea pig, oral)200 mg/kg (dog, oral)70 mg/kg (cat, oral)[5]
US health exposure limits (NIOSH):
TWA 2 mg/m[2]
C 2 mg/m[15-minute][2]
50 mg/m[2]
Related compounds
PyrocatecholResorcinol
1,4-benzoquinone
Infobox references

Production

Hydroquinone is produced industrially by two main routes.[8]

  • The most widely used route is similar to the cumene process in reaction mechanism and involves the dialkylation of benzene with propene to give 1,4-diisopropylbenzene. This compound reacts with air to afford the bis(hydroperoxide), which is structurally similar to cumene hydroperoxide and rearranges in acid to give acetone and hydroquinone.[9]

  • A second route involves hydroxylation of phenol. The conversion uses hydrogen peroxide and affords a mixture of hydroquinone and catechol (benzene-1,2-diol):

CHOH + HO→ CH(OH)
  • H
O

Other, less common methods include:

  • The oxidation of aniline by manganese dioxide followed by reduction of the resulting 1,4-benzoquinone. The process is conducted batchwise and generates a substantial waste stream.

  • A potentially significant synthesis of hydroquinone from acetylene and iron pentacarbonyl has been proposed[10][11][12][13][14][15] Iron pentacarbonyl serves as a catalyst, rather than as a reagent, in the presence of free carbon monoxide gas. Rhodium or ruthenium can substitute for iron as the catalyst with favorable chemical yields but are not typically used due to their cost of recovery from the reaction mixture.[10]

  • Hydroquinone and its derivatives can also be prepared by oxidation of various phenols. Examples include Elbs persulfate oxidation and Dakin oxidation:

  • Hydroquinone was first obtained in 1820 by the French chemists Pelletier and Caventou via the dry distillation of quinic acid.[16]

Reactions

The reactivity of hydroquinone's O-H groups resembles that of other phenols, being weakly acidic. The resulting conjugate base undergoes easy O-alkylation to give mono- and diethers. Similarly, hydroquinone is highly susceptible to ring substitution by Friedel-Crafts reactions such as alkylation. This reaction is exploited en route to popular antioxidants such as 2-tert-butyl-4-methoxyphenol ("BHA"). The useful dye quinizarin is produced by diacylation of hydroquinone with phthalic anhydride.[8]

Redox

Hydroquinone undergoes oxidation under mild conditions to give benzoquinone. This process can be reversed. Some naturally occurring hydroquinone derivatives exhibit this sort of reactivity, one example being coenzyme Q. Industrially this reaction is exploited both with hydroquinone itself but more often with its derivatives where one OH has been replaced by an amine.

When colorless hydroquinone and benzoquinone, a bright yellow solid, are co-crystallized in a 1:1 ratio, a dark-green crystalline charge-transfer complex (m.p. 171 °C) called quinhydrone (C6H6O2•C6H4O2) is formed. This complex dissolves in hot water, where the two molecules dissociate in solution.[17]

Amination

An important reaction is the conversion of hydroquinone to the mono- and diamino derivatives.

Methylaminophenol, used in photography, is produced in this way:[8]

Similarly diamines, useful in the rubber industry as antiozone agents, are produced similarly from aniline:

CH(OH)
  • 2 C
HNH→ CH(N(H)CH)
  • 2 H
O

Uses

Hydroquinone has a variety of uses principally associated with its action as a reducing agent that is soluble in water. It is a major component in most black and white photographic developers for film and paper where, with the compound metol, it reduces silver halides to elemental silver.

There are various other uses associated with its reducing power. As a polymerization inhibitor, expoliting its antioxidant properties, hydroquinone prevents polymerization of acrylic acid, methyl methacrylate, cyanoacrylate, and other monomers that are susceptible to radical-initiated polymerization. By acting as a free radical scavenger, hydroquinone serves to prolong the shelf life of light sensitive resins such as preceramic polymers [18]

Hydroquinone can lose a proton from both hydroxyl groups to form a diphenolate ion.

The disodium diphenolate salt of hydroquinone is used as an alternating comonomer unit in the production of the polymer PEEK.

Skin depigmentation

Hydroquinone is used as a topical application in skin whitening to reduce the color of skin. It does not have the same predisposition to cause dermatitis as metol does. This is a prescription-only ingredient in some countries, including the member states of the European Union under Directives 76/768/EEC:1976.[19][20]

In 2006, the United States Food and Drug Administration revoked its previous approval of hydroquinone and proposed a ban on all over-the-counter preparations.[21] The FDA stated that hydroquinone cannot be ruled out as a potential carcinogen.[22] This conclusion was reached based on the extent of absorption in humans and the incidence of neoplasms in rats in several studies where adult rats were found to have increased rates of tumours, including thyroid follicular cell hyperplasias, anisokaryosis (variation in nuclei sizes), mononuclear cell leukemia, hepatocellular adenomas and renal tubule cell adenomas. The Campaign for Safe Cosmetics has also highlighted concerns.[23]

Numerous studies have revealed that hydroquinone, if taken orally, can cause exogenous ochronosis, a disfiguring disease in which blue-black pigments are deposited onto the skin; however, skin preparations containing the ingredient are administered topically. The FDA had classified hydroquinone in 1982 as a safe product - generally recognized as safe and effective (GRASE), however additional studies under the National Toxicology Program (NTP) were suggested in order to determine whether there is a risk to humans from the use of hydroquinone.[21][24][22] NTP evaluation showed some evidence of long-term carcinogenic and genotoxic effects[25]

While using hydroquinone as a lightening agent can be effective with proper use, it can also cause skin sensitivity.

Using a daily sunscreen with a high PPD (persistent pigment darkening) rating reduces the risk of further damage. Hydroquinone is sometimes combined with alpha hydroxy acids that exfoliate the skin to quicken the lightening process. In the United States, topical treatments usually contain up to 2% in hydroquinone. Otherwise, higher concentrations (up to 4%) should be prescribed and used with caution.

While hydroquinone remains widely prescribed for treatment of hyperpigmentation, questions raised about its safety profile by regulatory agencies in the EU, Japan, and USA encourage the search for other agents with comparable efficacy.[26] Several such agents are already available or under research,[27] including azelaic acid,[28] kojic acid, retinoids, cysteamine,[29] topical steroids, glycolic acid, and other substances.

Natural occurrences

Hydroquinones are one of the two primary reagents in the defensive glands of bombardier beetles, along with hydrogen peroxide (and perhaps other compounds, depending on the species), which collect in a reservoir. The reservoir opens through a muscle-controlled valve onto a thick-walled reaction chamber. This chamber is lined with cells that secrete catalases and peroxidases. When the contents of the reservoir are forced into the reaction chamber, the catalases and peroxidases rapidly break down the hydrogen peroxide and catalyze the oxidation of the hydroquinones into p-quinones. These reactions release free oxygen and generate enough heat to bring the mixture to the boiling point and vaporize about a fifth of it, producing a hot spray from the beetle's abdomen.[30]

Farnesyl hydroquinone derivatives are the principal irritants exuded by the poodle-dog bush, which can cause severe contact dermatitis in humans.

Hydroquinone is thought to be the active toxin in Agaricus hondensis mushrooms.[31]

Hydroquinone has been shown to be one of the chemical constituents of the natural product propolis.[32]

It is also one of the chemical compounds found in castoreum. This compound is gathered from the beaver's castor sacs.[33]

In bearberry (Arctostaphylos uva-ursi), arbutin is converted to hydroquinone.

See also

  • Photographic developer

  • Semiquinone

References

[1]
Citation Link//doi.org/10.1039%2F9781849733069-FP001"Front Matter". Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 691. doi:10.1039/9781849733069-FP001. ISBN 978-0-85404-182-4.
Sep 26, 2019, 5:31 PM
[2]
Citation Linkwww.cdc.govNIOSH Pocket Guide to Chemical Hazards. "#0338". National Institute for Occupational Safety and Health (NIOSH).
Sep 26, 2019, 5:31 PM
[3]
Citation Linkwww.inchem.org"Hydroquinone" (PDF). OECD SIDS. UNEP Publications.
Sep 26, 2019, 5:31 PM
[4]
Citation Link//doi.org/10.1021%2Fja01218a051Lander, John J.; Svirbely, John J. Lander, W. J. (1945). "The Dipole Moments of Catechol, Resorcinol and Hydroquinone". Journal of the American Chemical Society. 67 (2): 322–324. doi:10.1021/ja01218a051.
Sep 26, 2019, 5:31 PM
[5]
Citation Linkwww.cdc.gov"Hydroquinone". Immediately Dangerous to Life and Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
Sep 26, 2019, 5:31 PM
[6]
Citation Linkweb.archive.org"Archived copy" (PDF). Archived (PDF) from the original on 2014-02-02. Retrieved 2014-01-25.CS1 maint: archived copy as title (link)
Sep 26, 2019, 5:31 PM
[7]
Citation Linkbabel.hathitrust.orgF. Wöhler (1844) "Untersuchungen über das Chinon" (Investigations of quinone), Annalen der Chemie und Pharmacie, 51 : 145-163. From page 146: "Das so erhaltene Destillat … enthält … einen neuen, krystallisierenden Körper, den ich unter dem Namenfarbloses Hydrochinonweiter unten näher beschreiben werde." (The distillate so obtained … contains … a new, crystallizable substance, that I will describe, under the name of colorless hydroquinone, further below in more detail.) [Note: Wöhler's empirical formula for hydroquinone (p. 152) is incorrect because (1) he attributed 25 (instead of 24) carbon atoms to the molecule, and (2) as many chemists at the time did, he used the wrong atomic masses for carbon (6 instead of 12) and oxygen (8 instead of 16). With these corrections, his empirical formula becomes: C12H12O4. Dividing the subscripts by 2, the result is: C6H6O2, which is correct.]
Sep 26, 2019, 5:31 PM
[8]
Citation Linkdoi.orgPhillip M. Hudnall "Hydroquinone" in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim. 2005 Wiley-VCH, Weinheim. doi:10.1002/14356007.a13_499.
Sep 26, 2019, 5:31 PM
[9]
Citation Linkdoi.orgGerhard Franz, Roger A. Sheldon "Oxidation" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000 doi:10.1002/14356007.a18_261
Sep 26, 2019, 5:31 PM
[10]
Citation Link//doi.org/10.1002%2Fanie.196907271Reppe, Walter; Kutepow, N; Magin, A (1969). "Cyclization of Acetylenic Compounds". Angewandte Chemie International Edition in English. 8 (10): 727–733. doi:10.1002/anie.196907271.
Sep 26, 2019, 5:31 PM
[11]
Citation Linkdocs.google.comHubel, Karl; Braye, Henri (1960). Process for the preparation of substituted cyclic compounds and products resulting therefrom US3149138 A (PDF). Union Carbide Corp.
Sep 26, 2019, 5:31 PM
[12]
Citation Linkdocs.google.comPino, Piero; Braca, Giuseppe; Sbrana, Glauco (1964). Preparation of hydroquinone US3355503 A (PDF). Lonza Ag.
Sep 26, 2019, 5:31 PM
[13]
Citation Linkdocs.google.comWalter, Reppe; Magin, August (1966). Production of hydroquinones US3394193 A (PDF). Basf Ag.
Sep 26, 2019, 5:31 PM
[14]
Citation Linkdocs.google.comPiero, Pino; Giuseppe, Braca; Frediano, Settimo; Glauco, Sbrana (1967). Preparation of hydroquinone US3459812 A (PDF). Lonza Ag.
Sep 26, 2019, 5:31 PM
[15]
Citation Linkdocs.google.comHolmes, J.; Hagemeyer, H. (1971). Process for the production of hydroquinone US 3742071 A (PDF). Eastman Kodak Co.
Sep 26, 2019, 5:31 PM
[16]
Citation Linkbooks.google.comSee: Pelletier and Caventou (1820) "Recherches chimiques sur les quinquinas" (Chemical investigations of quinquinas [i.e., the bark of various Cinchona trees]), Annales de Chimie et de Physique, 2nd series, 15 : 289-318, 337-364. On pages 341-342, the preparation and properties of l'acide pyro-kinique (pyroquinic acid or hydroquinone) are discussed. Roscoe, Henry (1891). A Treatise on Chemistry, Volume 3, Part 3. London: Macmillan & Co. p. 165.
Sep 26, 2019, 5:31 PM
[17]
Citation Link//www.worldcat.org/oclc/528363131927-, Streitwieser, Andrew (1992). Introduction to organic chemistry. Heathcock, Clayton H., 1936-, Kosower, Edward M. (4th ed.). Upper Saddle River, N.J.: Prentice Hall. ISBN 978-0139738500. OCLC 52836313.
Sep 26, 2019, 5:31 PM
[18]
Citation Linkwww.researchgate.netAdditive manufacturing of ceramics from preceramic polymers Additive manufacturing 2019 vol. 27. pp 80-90
Sep 26, 2019, 5:31 PM
[19]
Citation Linkeur-lex.europa.eu76/768/EEC:1976 Council Directive 76/768/EEC of 27 July 1976 on the approximation of the laws of the Member States relating to cosmetic products : http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31976L0768:EN:HTML
Sep 26, 2019, 5:31 PM
[20]
Citation Linkwww.beskinformed.com"Clear N Smooth Skin Toning Cream recalled". Retrieved 4 April 2018.
Sep 26, 2019, 5:31 PM