Goldbach's weak conjecture
Goldbach's weak conjecture
In number theory, Goldbach's weak conjecture, also known as the odd Goldbach conjecture, the ternary Goldbach problem, or the 3-primes problem, states that
- Everyodd numbergreater than 5 can be expressed as the sum of threeprimes. (A prime may be used more than once in the same sum.)
This conjecture is called "weak" because if Goldbach's strong conjecture (concerning sums of two primes) is proven, it would be true. For if every even number greater than 4 is the sum of two odd primes, adding 3 to each even number greater than 4 will produce the odd numbers greater than 7 (and 7 itself is equal to 2+2+3).
Some state the conjecture as
- Every odd number greater than 7 can be expressed as the sum of three odd primes.[3]
This version excludes 7 = 2+2+3 because this requires the even prime 2. On odd numbers larger than 7 it is slightly stronger as it also excludes sums like 17 = 2+2+13, which are allowed in the other formulation. Helfgott's proof covers both versions of the conjecture. Like the other formulation, this one also immediately follows from Goldbach's strong conjecture.
Timeline of results
In 1997, Deshouillers, Effinger, te Riele and Zinoviev published a result showing[5] that the generalized Riemann hypothesis implies Goldbach's weak conjecture for all numbers. This result combines a general statement valid for numbers greater than 1020 with an extensive computer search of the small cases. Saouter also conducted a computer search covering the same cases at approximately the same time.[6]
Olivier Ramaré in 1995 showed that every even number n ≥ 4 is in fact the sum of at most six primes, from which it follows that every odd number n ≥ 5 is the sum of at most seven primes. Leszek Kaniecki showed every odd integer is a sum of at most five primes, under the Riemann Hypothesis.[7] In 2012, Terence Tao proved this without the Riemann Hypothesis; this improves both results.[8]