Everipedia Logo
Everipedia is now IQ.wiki - Join the IQ Brainlist and our Discord for early access to editing on the new platform and to participate in the beta testing.
Form factor (quantum field theory)

Form factor (quantum field theory)

In elementary particle physics and mathematical physics, in particular in effective field theory, a form factor is a function that encapsulates the properties of a certain particle interaction without including all of the underlying physics, but instead, providing the momentum dependence of suitable matrix elements. It is further measured experimentally in confirmation or specification of a theory—see experimental particle physics.

Photon-nucleon example

For example, at low energies the interaction of a photon with a nucleon is a very complicated calculation involving interactions between the photon and a sea of quarks and gluons, and often the calculation cannot be fully performed from first principles. Often in this context, form factors are also called "structure functions", since they can be used to describe the structure of the nucleon.

However, the generic Lorentz-invariant form of the matrix element for the electromagnetic current interaction is known,

whererepresents the photonmomentum(equal in magnitude to E/c, where E is the energy of the photon). The three functions:are associated to theelectricandmagnetic form factorsfor this interaction, and are routinely measured experimentally; these three effective vertices can then be used to check, or perform calculations that would otherwise be too difficult to perform from first principles. This matrix element then serves to determine the transition amplitude involved in the scattering interaction or the respective particle decay—cf.Fermi's golden rule.

In general, the Fourier transforms of form factor components correspond to electric charge or magnetic profile space distributions (such as the charge radius) of the hadron involved. The analogous QCD structure functions are a probe of the quark and gluon distributions of nucleons.

References

[1]
Citation Linkdoi.org10.1063/1.3035356
Sep 20, 2019, 12:32 PM
[2]
Citation Linkwww.scholarpedia.orgonline article
Sep 20, 2019, 12:32 PM
[3]
Citation Linkdoi.org10.1063/1.3035356
Sep 20, 2019, 12:32 PM
[4]
Citation Linkwww.scholarpedia.orgonline article
Sep 20, 2019, 12:32 PM
[5]
Citation Linken.wikipedia.orgThe original version of this page is from Wikipedia, you can edit the page right here on Everipedia.Text is available under the Creative Commons Attribution-ShareAlike License.Additional terms may apply.See everipedia.org/everipedia-termsfor further details.Images/media credited individually (click the icon for details).
Sep 20, 2019, 12:32 PM