Electric field
Electric field
An electric field surrounds an electric charge, and exerts force on other charges in the field, attracting or repelling them.[1][2] Electric field is sometimes abbreviated as E-field.[3] The electric field is defined mathematically as a vector field that associates to each point in space the (electrostatic or Coulomb) force per unit of charge exerted on an infinitesimal positive test charge at rest at that point.[4][5][6] The SI unit for electric field strength is volt per meter (V/m).[7] Newtons per coulomb (N/C) is also used as a unit of electric field strength. Electric fields are created by electric charges, or by time-varying magnetic fields. Electric fields are important in many areas of physics, and are exploited practically in electrical technology. On an atomic scale, the electric field is responsible for the attractive force between the atomic nucleus and electrons that holds atoms together, and the forces between atoms that cause chemical bonding. Electric fields and magnetic fields are both manifestations of the electromagnetic force, one of the four fundamental forces (or interactions) of nature.
Definition
- whereis theunit vectorin the direction from pointto point, andε0is theelectric constant(also known as "the absolute permittivity of free space") in C2m−2N−1
If there are multiple charges, the resultant Coulomb force on a charge can be found by summing the vectors of the forces due to each charge. This shows the electric field obeys the superposition principle: the total electric field at a point due to a collection of charges is just equal to the vector sum of the electric fields at that point due to the individual charges.[6][9]
- whereis theunit vectorin the direction from pointto point.
The units of the electric field in the SI system are newtons per coulomb (N/C), or volts per meter (V/m); in terms of the SI base units they are kg⋅m⋅s−3⋅A−1
Sources
Causes and description
Electric fields are caused by electric charges, described by Gauss's law,[10] or varying magnetic fields, described by Faraday's law of induction.[11] Together, these laws are enough to define the behavior of the electric field as a function of charge repartition and magnetic field. However, since the magnetic field is described as a function of electric field, the equations of both fields are coupled and together form Maxwell's equations that describe both fields as a function of charges and currents.
Continuous vs. discrete charge representation
The equations of electromagnetism are best described in a continuous description. However, charges are sometimes best described as discrete points; for example, some models may describe electrons as point sources where charge density is infinite on an infinitesimal section of space.
Superposition principle
Electrostatic fields
Electrostatic fields are electric fields which do not change with time, which happens when charges and currents are stationary. In that case, Coulomb's law fully describes the field.[13]
Electric potential
Parallels between electrostatic and gravitational fields
Coulomb's law, which describes the interaction of electric charges:
is similar to Newton's law of universal gravitation:
This suggests similarities between the electric field E and the gravitational field g, or their associated potentials. Mass is sometimes called "gravitational charge".[15]
Electrostatic and gravitational forces both are central, conservative and obey an inverse-square law.
Uniform fields
A uniform field is one in which the electric field is constant at every point. It can be approximated by placing two conducting plates parallel to each other and maintaining a voltage (potential difference) between them; it is only an approximation because of boundary effects (near the edge of the planes, electric field is distorted because the plane does not continue). Assuming infinite planes, the magnitude of the electric field E is:
where ΔV is the potential difference between the plates and d is the distance separating the plates. The negative sign arises as positive charges repel, so a positive charge will experience a force away from the positively charged plate, in the opposite direction to that in which the voltage increases. In micro- and nano-applications, for instance in relation to semiconductors, a typical magnitude of an electric field is in the order of 106 V⋅m−1, achieved by applying a voltage of the order of 1 volt between conductors spaced 1 µm apart.
Electrodynamic fields
Electrodynamic fields are electric fields which do change with time, for instance when charges are in motion.
One can recover Faraday's law of induction by taking the curl of that equation
which justifies, a posteriori, the previous form for E.
Energy in the electric field
The total energy per unit volume stored by the electromagnetic field is[17]
As E and B fields are coupled, it would be misleading to split this expression into "electric" and "magnetic" contributions. However, in the steady-state case, the fields are no longer coupled (see Maxwell's equations). It makes sense in that case to compute the electrostatic energy per unit volume:
The total energy U stored in the electric field in a given volume V is therefore
Further extensions
Definitive equation of vector fields
In the presence of matter, it is helpful to extend the notion of the electric field into three vector fields:[18]
where P is the electric polarization – the volume density of electric dipole moments, and D is the electric displacement field. Since E and P are defined separately, this equation can be used to define D. The physical interpretation of D is not as clear as E (effectively the field applied to the material) or P (induced field due to the dipoles in the material), but still serves as a convenient mathematical simplification, since Maxwell's equations can be simplified in terms of free charges and currents.
Constitutive relation
For linear, homogeneous, isotropic materials E and D are proportional and constant throughout the region, there is no position dependence: For inhomogeneous materials, there is a position dependence throughout the material:
For anisotropic materials the E and D fields are not parallel, and so E and D are related by the permittivity tensor (a 2nd order tensor field), in component form:
For non-linear media, E and D are not proportional. Materials can have varying extents of linearity, homogeneity and isotropy.
See also
Classical electromagnetism
Field strength
Signal strength in telecommunications
Teltron tube
Teledeltos, a conductive paper that may be used as a simple analog computer for modelling fields