Big O notation
Big O notation
Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. It is a member of a family of notations invented by Paul Bachmann,[1] Edmund Landau,[2] and others, collectively called Bachmann–Landau notation or asymptotic notation.
In computer science, big O notation is used to classify algorithms according to how their running time or space requirements grow as the input size grows.[3] In analytic number theory, big O notation is often used to express a bound on the difference between an arithmetical function and a better understood approximation; a famous example of such a difference is the remainder term in the prime number theorem.
Big O notation characterizes functions according to their growth rates: different functions with the same growth rate may be represented using the same O notation.
The letter O is used because the growth rate of a function is also referred to as the order of the function. A description of a function in terms of big O notation usually only provides an upper bound on the growth rate of the function. Associated with big O notation are several related notations, using the symbols o, Ω, ω, and Θ, to describe other kinds of bounds on asymptotic growth rates.
Big O notation is also used in many other fields to provide similar estimates.
Formal definition
Let f be a real or complex valued function and g a real valued function, both defined on some unbounded subset of the real positive numbers, such that g(x) is strictly positive for all large enough values of x.[4] One writes
if and only if for all sufficiently large values of x, the absolute value of f(x) is at most a positive constant multiple of g(x). That is, f(x) = O(g(x)) if and only if there exists a positive real number M and a real number x0 such that
In many contexts, the assumption that we are interested in the growth rate as the variable x goes to infinity is left unstated, and one writes more simply that
The notation can also be used to describe the behavior of f near some real number a (often, a = 0): we say
if and only if there exist positive numbers δ and M such that
As g(x) is chosen to be non-zero for values of x sufficiently close to a, both of these definitions can be unified using the limit superior:
if and only if
Example
In typical usage the O notation is asymptotical, that is, it refers to very large x. In this setting, the contribution of the terms that grow "most quickly" will eventually make the other ones irrelevant. As a result, the following simplification rules can be applied:
If f(x) is a sum of several terms, if there is one with largest growth rate, it can be kept, and all others omitted.
If f(x) is a product of several factors, any constants (terms in the product that do not depend on x) can be omitted.
For example, let f(x) = 6x4 − 2x3 + 5, and suppose we wish to simplify this function, using O notation, to describe its growth rate as x approaches infinity. This function is the sum of three terms: 6x4, −2x3, and 5. Of these three terms, the one with the highest growth rate is the one with the largest exponent as a function of x, namely 6x4. Now one may apply the second rule: 6x4 is a product of 6 and x4 in which the first factor does not depend on x. Omitting this factor results in the simplified form x4. Thus, we say that f(x) is a "big-oh" of (x4). Mathematically, we can write f(x) = O(x4). One may confirm this calculation using the formal definition: let f(x) = 6x4 − 2x3 + 5 and g(x) = x4. Applying the formal definition from above, the statement that f(x) = O(x4) is equivalent to its expansion,
for some suitable choice of x0 and M and for all x > x0. To prove this, let x0 = 1 and M = 13. Then, for all x > x0:
so
Usage
Big O notation has two main areas of application:
in mathematics, it is commonly used to describe how closely a finite series approximates a given function, especially in the case of a truncated Taylor series or asymptotic expansion
in computer science, it is useful in the analysis of algorithms
In both applications, the function g(x) appearing within the O(...) is typically chosen to be as simple as possible, omitting constant factors and lower order terms.
There are two formally close, but noticeably different, usages of this notation:
infinite asymptotics
infinitesimal asymptotics.
This distinction is only in application and not in principle, however—the formal definition for the "big O" is the same for both cases, only with different limits for the function argument.
Infinite asymptotics
Big O notation is useful when analyzing algorithms for efficiency. For example, the time (or the number of steps) it takes to complete a problem of size n might be found to be T(n) = 4n2 − 2n + 2. As n grows large, the n2 term will come to dominate, so that all other terms can be neglected—for instance when n = 500, the term 4n2 is 1000 times as large as the 2n term. Ignoring the latter would have negligible effect on the expression's value for most purposes. Further, the coefficients become irrelevant if we compare to any other order of expression, such as an expression containing a term n3 or n4. Even if T(n) = 1,000,000n2, if U(n) = n3, the latter will always exceed the former once n grows larger than 1,000,000 (T(1,000,000) = 1,000,0003= U(1,000,000)). Additionally, the number of steps depends on the details of the machine model on which the algorithm runs, but different types of machines typically vary by only a constant factor in the number of steps needed to execute an algorithm. So the big O notation captures what remains: we write either
or
and say that the algorithm has order of n2 time complexity. The sign "=" is not meant to express "is equal to" in its normal mathematical sense, but rather a more colloquial "is", so the second expression is sometimes considered more accurate (see the "Equals sign" discussion below) while the first is considered by some as an abuse of notation.[5]
Infinitesimal asymptotics
Big O can also be used to describe the error term in an approximation to a mathematical function. The most significant terms are written explicitly, and then the least-significant terms are summarized in a single big O term. Consider, for example, the exponential series and two expressions of it that are valid when x is small:
The second expression (the one with O(x3)) means the absolute-value of the error e**x − (1 + x + x2/2) is at most some constant times |x3| when x is close enough to 0.
Properties
If the function f can be written as a finite sum of other functions, then the fastest growing one determines the order of f(n). For example,
In particular, if a function may be bounded by a polynomial in n, then as n tends to infinity, one may disregard lower-order terms of the polynomial. The sets O(n**c) and O(c**n) are very different. If c is greater than one, then the latter grows much faster. A function that grows faster than n**c for any c is called superpolynomial. One that grows more slowly than any exponential function of the form c**n is called subexponential. An algorithm can require time that is both superpolynomial and subexponential; examples of this include the fastest known algorithms for integer factorization and the function nlog n.
We may ignore any powers of n inside of the logarithms. The set O(log n) is exactly the same as O(log(n**c)). The logarithms differ only by a constant factor (since log(n**c) = c log n) and thus the big O notation ignores that. Similarly, logs with different constant bases are equivalent. On the other hand, exponentials with different bases are not of the same order. For example, 2n and 3n are not of the same order.
Changing units may or may not affect the order of the resulting algorithm. Changing units is equivalent to multiplying the appropriate variable by a constant wherever it appears. For example, if an algorithm runs in the order of n2, replacing n by cn means the algorithm runs in the order of c2n2, and the big O notation ignores the constant c2. This can be written as c2n2 = O(n2). If, however, an algorithm runs in the order of 2n, replacing n with cn gives 2cn = (2c)n. This is not equivalent to 2n in general. Changing variables may also affect the order of the resulting algorithm. For example, if an algorithm's run time is O(n) when measured in terms of the number n of digits of an input number x, then its run time is O(log x) when measured as a function of the input number x itself, because n = O(log x).
Product
Sum
Multiplication by a constant
- Let k be constant. Then:if k is nonzero.
Multiple variables
if and only if[6]
asserts that there exist constants C and M such that
where g(n,m) is defined by
This is not the only generalization of big O to multivariate functions, and in practice, there is some inconsistency in the choice of definition.[7]
Matters of notation
Equals sign
The statement "f(x) is O(g(x))" as defined above is usually written as f(x) = O(g(x)). Some consider this to be an abuse of notation, since the use of the equals sign could be misleading as it suggests a symmetry that this statement does not have. As de Bruijn says, O(x) = O(x2) is true but O(x2) = O(x) is not.[8] Knuth describes such statements as "one-way equalities", since if the sides could be reversed, "we could deduce ridiculous things like n = n2 from the identities n = O(n2) and n2 = O(n2)."[9]
For these reasons, it would be more precise to use set notation and write f(x) ∈ O(g(x)), thinking of O(g(x)) as the class of all functions h(x) such that |h(x)| ≤ C|g(x)| for some constant C.[9] However, the use of the equals sign is customary. Knuth pointed out that "mathematicians customarily use the = sign as they use the word 'is' in English: Aristotle is a man, but a man isn't necessarily Aristotle."[10]
Other arithmetic operators
Big O notation can also be used in conjunction with other arithmetic operators in more complicated equations. For example, h(x) + O(f(x)) denotes the collection of functions having the growth of h(x) plus a part whose growth is limited to that of f(x). Thus,
expresses the same as
Example
Suppose an algorithm is being developed to operate on a set of n elements. Its developers are interested in finding a function T(n) that will express how long the algorithm will take to run (in some arbitrary measurement of time) in terms of the number of elements in the input set. The algorithm works by first calling a subroutine to sort the elements in the set and then perform its own operations. The sort has a known time complexity of O(n2), and after the subroutine runs the algorithm must take an additional 55n3 + 2n + 10 steps before it terminates. Thus the overall time complexity of the algorithm can be expressed as T(n) = 55n3 + O(n2). Here the terms 2n+10 are subsumed within the faster-growing O(n2). Again, this usage disregards some of the formal meaning of the "=" symbol, but it does allow one to use the big O notation as a kind of convenient placeholder.
Multiple usages
The meaning of such statements is as follows: for any functions which satisfy each O(...) on the left side, there are some functions satisfying each O(...) on the right side, such that substituting all these functions into the equation makes the two sides equal. For example, the third equation above means: "For any function f(n) = O(1), there is some function g(n) = O(e**n) such that n**f(n) = g(n)." In terms of the "set notation" above, the meaning is that the class of functions represented by the left side is a subset of the class of functions represented by the right side. In this use the "=" is a formal symbol that unlike the usual use of "=" is not a symmetric relation. Thus for example n**O(1) = O(e**n) does not imply the false statement O(e**n) = n**O(1)
Typesetting
Orders of common functions
Here is a list of classes of functions that are commonly encountered when analyzing the running time of an algorithm. In each case, c is a positive constant and n increases without bound. The slower-growing functions are generally listed first.
Notation | Name | Example |
---|---|---|
constant | Determining if a binary number is even or odd; Calculating; Using a constant-size lookup table | |
double logarithmic | Number of comparisons spent finding an item using interpolation search in a sorted array of uniformly distributed values | |
logarithmic | Finding an item in a sorted array with a binary search or a balanced search tree as well as all operations in a Binomial heap | |
polylogarithmic | Matrix chain ordering can be solved in polylogarithmic time on a parallel random-access machine. | |
fractional power | Searching in a k-d tree | |
linear | Finding an item in an unsorted list or in an unsorted array; adding two n-bit integers by ripple carry | |
n log-star n | Performing triangulation of a simple polygon using Seidel's algorithm, or the union–find algorithm. Note that | |
linearithmic, loglinear, quasilinear, or "n log n" | Performing a fast Fourier transform; Fastest possible comparison sort; heapsort and merge sort | |
quadratic | Multiplying two n-digit numbers by a simple algorithm; simple sorting algorithms, such as bubble sort, selection sort and insertion sort; (worst case) bound on some usually faster sorting algorithms such as quicksort, Shellsort, and tree sort | |
polynomial or algebraic | Tree-adjoining grammar parsing; maximum matching for bipartite graphs; finding the determinant with LU decomposition | |
L-notation or sub-exponential | Factoring a number using the quadratic sieve or number field sieve | |
exponential | Finding the (exact) solution to the travelling salesman problem using dynamic programming; determining if two logical statements are equivalent using brute-force search | |
factorial | Solving the travelling salesman problem via brute-force search; generating all unrestricted permutations of a poset; finding the determinant with Laplace expansion; enumerating all partitions of a set |
Related asymptotic notations
Big O is the most commonly used asymptotic notation for comparing functions. Together with some other related notations it forms the family of Bachmann–Landau notations.
Little-o notation
Intuitively, the assertion "f(x) is o(g(x))" (read "f(x) is little-o of g(x)") means that g(x) grows much faster than f(x). Let as before f be a real or complex valued function and g a real valued function, both defined on some unbounded subset of the real positive numbers, such that g(x) is strictly positive for all large enough values of x. One writes
if for every positive constant ε there exists a constant N such that
For example, one has
- and
As g(x) is nonzero, or at least becomes nonzero beyond a certain point, the relation f(x) = o(g(x)) is equivalent to
- (and this is in fact how Landau[12] originally defined the little-o notation).
Little-o respects a number of arithmetic operations. For example,
- ifcis a nonzero constant andthen, andifandthen
It also satisfies a transitivity relation:
- ifandthen
Big Omega notation
There are two very widespread and incompatible definitions of the statement
where a is some real number, ∞, or −∞, where f and g are real functions defined in a neighbourhood of a, and where g is positive in this neighbourhood.
The first one (chronologically) is used in analytic number theory, and the other one in computational complexity theory. When the two subjects meet, this situation is bound to generate confusion.
The Hardy–Littlewood definition
- ;
Simple examples
We have
and more precisely
We have
and more precisely
however
The Knuth definition
Family of Bachmann–Landau notations
Notation | Name[19] | Description | Formal Definition | Limit Definition[20][21][22][19][14] |
---|---|---|---|---|
Small O; Small Oh | fis dominated bygasymptotically | |||
Big O; Big Oh; Big Omicron | is bounded above byg(up to constant factor) asymptotically | |||
Big Theta | fis bounded both above and below bygasymptotically | and(Knuth version) | ||
On the order of | fis equal togasymptotically | |||
Big Omega in number theory (Hardy–Littlewood) | is not dominated bygasymptotically | |||
Big Omega in complexity theory (Knuth) | fis bounded below bygasymptotically | |||
Small Omega | fdominatesgasymptotically |
Use in computer science
Informally, especially in computer science, the big O notation often can be used somewhat differently to describe an asymptotic tight bound where using big Theta Θ notation might be more factually appropriate in a given context. For example, when considering a function T(n) = 73n3 + 22n2 + 58, all of the following are generally acceptable, but tighter bounds (such as numbers 2 and 3 below) are usually strongly preferred over looser bounds (such as number 1 below).
T(n) = O(n100)
T(n) = O(n3)
T(n) = Θ(n3)
The equivalent English statements are respectively:
T(n) grows asymptotically no faster than n100
T(n) grows asymptotically no faster than n3
T(n) grows asymptotically as fast as n3.
So while all three statements are true, progressively more information is contained in each. In some fields, however, the big O notation (number 2 in the lists above) would be used more commonly than the big Theta notation (bullets number 3 in the lists above). For example, if T(n) represents the running time of a newly developed algorithm for input size n, the inventors and users of the algorithm might be more inclined to put an upper asymptotic bound on how long it will take to run without making an explicit statement about the lower asymptotic bound.
Other notation
In their book Introduction to Algorithms, Cormen, Leiserson, Rivest and Stein consider the set of functions f which satisfy
In a correct notation this set can, for instance, be called O(g), where
- there exist positive constants c andsuch thatfor all.[25]
The authors state that the use of equality operator (=) to denote set membership rather than the set membership operator (∈) is an abuse of notation, but that doing so has advantages.[5] Inside an equation or inequality, the use of asymptotic notation stands for an anonymous function in the set O(g), which eliminates lower-order terms, and helps to reduce inessential clutter in equations, for example:[26]
Extensions to the Bachmann–Landau notations
Another notation sometimes used in computer science is Õ (read soft-O): f(n) = Õ(g(n)) is shorthand for f(n) = O(g(n) logk g(n)) for some k. Essentially, it is big O notation, ignoring logarithmic factors because the growth-rate effects of some other super-logarithmic function indicate a growth-rate explosion for large-sized input parameters that is more important to predicting bad run-time performance than the finer-point effects contributed by the logarithmic-growth factor(s). This notation is often used to obviate the "nitpicking" within growth-rates that are stated as too tightly bounded for the matters at hand (since logk n is always o(nε) for any constant k and any ε > 0).
Also the L notation, defined as
Generalizations and related usages
The generalization to functions taking values in any normed vector space is straightforward (replacing absolute values by norms), where f and g need not take their values in the same space. A generalization to functions g taking values in any topological group is also possible. The "limiting process" x → xo can also be generalized by introducing an arbitrary filter base, i.e. to directed nets f and g. The o notation can be used to define derivatives and differentiability in quite general spaces, and also (asymptotical) equivalence of functions,
which is an equivalence relation and a more restrictive notion than the relationship "f is Θ(g)" from above. (It reduces to lim f / g = 1 if f and g are positive real valued functions.) For example, 2x is Θ(x), but 2x − x is not o(x).
History (Bachmann–Landau, Hardy, and Vinogradov notations)
Landau never used the big Theta and small omega symbols.
Hardy's symbols were (in terms of the modern O notation)
- and
and frequently both notations are used in the same paper.
The big-O originally stands for "order of" ("Ordnung", Bachmann 1894), and is thus a Latin letter. Neither Bachmann nor Landau ever call it "Omicron". The symbol was much later on (1976) viewed by Knuth as a capital omicron,[19] probably in reference to his definition of the symbol Omega. The digit zero should not be used.
See also
Asymptotic expansion: Approximation of functions generalizing Taylor's formula
Asymptotically optimal algorithm: A phrase frequently used to describe an algorithm that has an upper bound asymptotically within a constant of a lower bound for the problem
Big O in probability notation: Op,op
Limit superior and limit inferior: An explanation of some of the limit notation used in this article
Nachbin's theorem: A precise method of bounding complex analytic functions so that the domain of convergence of integral transforms can be stated
Orders of approximation
Computational complexity of mathematical operations
References and notes
Further reading
Hardy, G. H. (1910). Orders of Infinity: The 'Infinitärcalcül' of Paul du Bois-Reymond [66] . Cambridge University Press.
Knuth, Donald (1997). "1.2.11: Asymptotic Representations". Fundamental Algorithms. The Art of Computer Programming. 1 (3rd ed.). Addison–Wesley. ISBN 978-0-201-89683-1.
Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001). "3.1: Asymptotic notation". Introduction to Algorithms (2nd ed.). MIT Press and McGraw–Hill. ISBN 978-0-262-03293-3.
Sipser, Michael (1997). Introduction to the Theory of Computation. PWS Publishing. pp. 226–228. ISBN 978-0-534-94728-6.
Avigad, Jeremy; Donnelly, Kevin (2004). Formalizing O notation in Isabelle/HOL [67] (PDF). International Joint Conference on Automated Reasoning. doi:10.1007/978-3-540-25984-8_27 [68] .
Black, Paul E. (11 March 2005). Black, Paul E. (ed.). "big-O notation" [69] . Dictionary of Algorithms and Data Structures. U.S. National Institute of Standards and Technology. Retrieved December 16, 2006.
Black, Paul E. (17 December 2004). Black, Paul E. (ed.). "little-o notation" [70] . Dictionary of Algorithms and Data Structures. U.S. National Institute of Standards and Technology. Retrieved December 16, 2006.
Black, Paul E. (17 December 2004). Black, Paul E. (ed.). "Ω" [71] . Dictionary of Algorithms and Data Structures. U.S. National Institute of Standards and Technology. Retrieved December 16, 2006.
Black, Paul E. (17 December 2004). Black, Paul E. (ed.). "ω" [72] . Dictionary of Algorithms and Data Structures. U.S. National Institute of Standards and Technology. Retrieved December 16, 2006.
Black, Paul E. (17 December 2004). Black, Paul E. (ed.). "Θ" [73] . Dictionary of Algorithms and Data Structures. U.S. National Institute of Standards and Technology. Retrieved December 16, 2006.