Everipedia Logo
Everipedia is now IQ.wiki - Join the IQ Brainlist and our Discord for early access to editing on the new platform and to participate in the beta testing.
Peyer's patch

Peyer's patch

Peyer's patches (or aggregated lymphoid nodules) are organized lymphoid follicles, named after the 17th-century Swiss anatomist Johann Conrad Peyer. They are an important part of gut associated lymphoid tissue usually found in humans in the lowest portion of the small intestine, mainly in the distal jejunum and the ileum, but also could be detected in the duodenum.[1]

Peyer's patch
Details
SystemLymphatic system
Identifiers
Latinnoduli lymphoidei aggregati
MeSHD010581 [13]
TAA05.6.01.014 [14]
THH3.04.03.0.00020 [15]
FMA15054 [16]
Anatomical terminology

Structure

Peyer's patches are observable as elongated thickenings of the intestinal epithelium measuring a few centimeters in length. About 100 are found in humans. Microscopically, Peyer's patches appear as oval or round lymphoid follicles (similar to lymph nodes) located in the submucosa layer of the ileum and extend into the mucosa layer. The number of Peyer's patches peaks at age 15–25 and then declines during adulthood.[1] In the distal ileum, they are numerous and they form a lymphoid ring. At least 46% of Peyer's patches are concentrated in the distal 25 cm of ileum in humans. It is important to note that there are large variations in size, shape, and distribution of Peyer's patches from one individual to another one.[2] In adults, B lymphocytes are seen to dominate the follicles' germinal centers. T lymphocytes are found in the zones between follicles. Among the mononuclear cells, CD4+/CD25+ (10%) cells and CD8+/CD25+ (5%) cells are more abundant in Peyer's patches than in the peripheral blood.[3]

Peyer's patches are characterized by the follicle-associated epithelium (FAE), which covers all lymphoid follicles.[4] FAE differs from typical small intestinal villus epithelium: it has fewer goblet cells[5] therefore mucus layer is thinner,[6] and it is also characterized by the presence of specialized M cells or microfold cells, which provide uptake and transport of antigens from lumen.[4] Moreover, basal lamina of follicle-associated epithelium is more porous compared to intestinal villus.[7] Finally, follicle-associated epithelium is less permeable for ions and macromolecules, basically due to higher expression of tight junction proteins.[8]

Function

Because the lumen of the gastrointestinal tract is exposed to the external environment, much of it is populated with potentially pathogenic microorganisms. Peyer's patches thus establish their importance in the immune surveillance of the intestinal lumen and in facilitating the generation of the immune response within the mucosa.

Pathogenic microorganisms and other antigens entering the intestinal tract encounter macrophages, dendritic cells, B-lymphocytes, and T-lymphocytes found in Peyer's patches and other sites of gut-associated lymphoid tissue (GALT). Peyer's patches thus act for the gastrointestinal system much as the tonsils act for the respiratory system, trapping foreign particles, surveilling them, and destroying them.

Peyer's patches are covered by a special follicle-associated epithelium that contains specialized cells called microfold cells (M cells) which sample antigen directly from the lumen and deliver it to antigen-presenting cells (located in a unique pocket-like structure on their basolateral side). Dendritic cells and macrophages can also directly sample the lumen by extending dendrites through transcellular M cell-specific pores.[9][10] At the same time the paracellular pathway of follicle-associated epithelium is closed tightly to prevent penetration of antigens and continuous contact with immune cells.[11] T cells, B-cells and memory cells are stimulated upon encountering antigen in Peyer's patches. These cells then pass to the mesenteric lymph nodes where the immune response is amplified. Activated lymphocytes pass into the blood stream via the thoracic duct and travel to the gut where they carry out their final effector functions. The maturation of B-lymphocytes takes place in the Peyer's patch.

Clinical significance

Although important in the immune response, excessive growth of lymphoid tissue in Peyer's patches is pathologic, as hypertrophy of Peyer's patches has been closely associated with idiopathic intussusception.

Having too many or larger than normal Peyer's patches is associated with an increased risk of prion diseases.

Salmonella typhi and poliovirus also target this section of the intestine.[12]

References

[1]
Citation Link//www.ncbi.nlm.nih.gov/pmc/articles/PMC1552287Zijlstra M, Auchincloss H, Loring JM, Chase CM, Russell PS, Jaenisch R (April 1992). "Skin graft rejection by beta 2-microglobulin-deficient mice". The Journal of Experimental Medicine. 175 (4): 885–93. doi:10.1136/gut.6.3.225. PMC 1552287.
Sep 24, 2019, 5:35 AM
[2]
Citation Link//www.ncbi.nlm.nih.gov/pubmed/11979138Van Kruiningen HJ, West AB, Freda BJ, Holmes KA (May 2002). "Distribution of Peyer's patches in the distal ileum". Inflammatory Bowel Diseases. 8 (3): 180–5. doi:10.1097/00054725-200205000-00004. PMID 11979138.
Sep 24, 2019, 5:35 AM
[3]
Citation Link//www.ncbi.nlm.nih.gov/pubmed/21188221Jung C, Hugot JP, Barreau F (September 2010). "Peyer's Patches: The Immune Sensors of the Intestine". International Journal of Inflammation. 2010: 823710. doi:10.4061/2010/823710. PMC 3004000. PMID 21188221.
Sep 24, 2019, 5:35 AM
[4]
Citation Link//www.ncbi.nlm.nih.gov/pubmed/4810912Owen RL, Jones AL (February 1974). "Epithelial cell specialization within human Peyer's patches: an ultrastructural study of intestinal lymphoid follicles". Gastroenterology. 66 (2): 189–203. doi:10.1016/s0016-5085(74)80102-2. PMID 4810912.
Sep 24, 2019, 5:35 AM
[5]
Citation Link//www.ncbi.nlm.nih.gov/pubmed/11341655Onori P, Franchitto A, Sferra R, Vetuschi A, Gaudio E (May 2001). "Peyer's patches epithelium in the rat: a morphological, immunohistochemical, and morphometrical study". Digestive Diseases and Sciences. 46 (5): 1095–104. doi:10.1023/a:1010778532240. PMID 11341655.
Sep 24, 2019, 5:35 AM
[6]
Citation Link//www.ncbi.nlm.nih.gov/pubmed/24358305Ermund A, Gustafsson JK, Hansson GC, Keita AV (2013). "Mucus properties and goblet cell quantification in mouse, rat and human ileal Peyer's patches". PLOS One. 8 (12): e83688. doi:10.1371/journal.pone.0083688. PMC 3865249. PMID 24358305.
Sep 24, 2019, 5:35 AM
[7]
Citation Link//www.ncbi.nlm.nih.gov/pubmed/15240945Takeuchi T, Gonda T (June 2004). "Distribution of the pores of epithelial basement membrane in the rat small intestine". The Journal of Veterinary Medical Science. 66 (6): 695–700. doi:10.1292/jvms.66.695. PMID 15240945.
Sep 24, 2019, 5:35 AM
[8]
Citation Link//www.ncbi.nlm.nih.gov/pubmed/26228735Markov AG, Falchuk EL, Kruglova NM, Radloff J, Amasheh S (January 2016). "Claudin expression in follicle-associated epithelium of rat Peyer's patches defines a major restriction of the paracellular pathway". Acta Physiologica. 216 (1): 112–9. doi:10.1111/apha.12559. PMID 26228735.
Sep 24, 2019, 5:35 AM
[9]
Citation Link//www.ncbi.nlm.nih.gov/pubmed/22155637Lelouard H, Fallet M, de Bovis B, Méresse S, Gorvel JP (March 2012). "Peyer's patch dendritic cells sample antigens by extending dendrites through M cell-specific transcellular pores". Gastroenterology. 142 (3): 592–601.e3. doi:10.1053/j.gastro.2011.11.039. PMID 22155637.
Sep 24, 2019, 5:35 AM
[10]
Citation Link//www.ncbi.nlm.nih.gov/pubmed/25921539Bonnardel J, Da Silva C, Henri S, Tamoutounour S, Chasson L, Montañana-Sanchis F, Gorvel JP, Lelouard H (May 2015). "Innate and adaptive immune functions of peyer's patch monocyte-derived cells". Cell Reports. 11 (5): 770–84. doi:10.1016/j.celrep.2015.03.067. PMID 25921539.
Sep 24, 2019, 5:35 AM
[11]
Citation Link//www.ncbi.nlm.nih.gov/pubmed/26335934Diener M (January 2016). "Roadblock for antigens--take a detour via M cells". Acta Physiologica. 216 (1): 13–4. doi:10.1111/apha.12595. PMID 26335934.
Sep 24, 2019, 5:35 AM
[12]
Citation Link//www.ncbi.nlm.nih.gov/pubmed/7407483Citron ND, Wade PJ (July 1980). "Penile injuries from vacuum cleaners". British Medical Journal. 281 (6232): 26. doi:10.1136/bmj.281.6232.26-a. PMC 1713722. PMID 7407483. Unlike S hadar peritonitis, S typhi peritonitis is due to perforation of Peyer's patches.
Sep 24, 2019, 5:35 AM
[13]
Citation Linkmeshb.nlm.nih.govD010581
Sep 24, 2019, 5:35 AM
[14]
Citation Linkwww.unifr.chA05.6.01.014
Sep 24, 2019, 5:35 AM
[15]
Citation Linkwww.unifr.chH3.04.03.0.00020
Sep 24, 2019, 5:35 AM
[16]
Citation Linkbioportal.bioontology.org15054
Sep 24, 2019, 5:35 AM
[17]
Citation Linkwww.ncbi.nlm.nih.gov"Skin graft rejection by beta 2-microglobulin-deficient mice"
Sep 24, 2019, 5:35 AM
[18]
Citation Linkdoi.org10.1136/gut.6.3.225
Sep 24, 2019, 5:35 AM
[19]
Citation Linkwww.ncbi.nlm.nih.gov1552287
Sep 24, 2019, 5:35 AM
[20]
Citation Linkdoi.org10.1097/00054725-200205000-00004
Sep 24, 2019, 5:35 AM